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Abstract

The contribution deals with an extension of a classical Neo-Hookean model for compressible isotropic materials to
transverse isotropy. With this enhancement for one preferred material direction there is a possibility to simulate large
strains in volume changes of the isotropic basic continuum and supplementary in fiber direction. The integrity basis of
polynomial invariants in case of transversely isotropic hyperelasticity consists of three principal invariants of the iso-
tropic basic continuum and additionally of two principal invariants for the preferred material direction. The proposed
stored energy function for transverse isotropy contains the classical theory near to the natural state and fulfills the
restriction on polyconvexity and coerciveness.

By numerical enforcement of the material model into shell kinematics without rotational variables a four-node
isoparametric finite element is developed using special concepts to avoid locking. The capability of the algorithms
proposed is demonstrated by a numerical example involving large strains as well as finite rotations. © 2001 Published by
Elsevier Science Ltd.
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1. Introduction

The main advantage of anisotropic materials is their optimized design regarding the functionality of the
structure (Braun, 1995; Schultz, 1996; Schroder, 1996; Basar et al., 1999a,b). Dealing with large strains
possible fields of application are automobile tires and biological soft tissues like arteries, skin or muscles.
Especially the aorta is a multi-layered structure composed of very thin transversely isotropic soft tissue layers
of muscles. In case of internal blood pressure the arteries undergo finite rotations as well as large strains
characterized by considerable changes of initial side length coupled with a considerable change of thickness.

Analyzing finite deformations a special attention will be given to model isotropy and transverse isotropy
in case of hyperelasticity. The use of a Lagrangean formulation in the right Cauchy-Green tensor C = F'F
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performs the principle of frame indifference. Symmetries of the material restrict the formulation to an ir-
reducible integrity basis of polynomial invariants, which consists for transverse isotropy of five irreducible
invariants. In literature basic invariants are often used in this context (Boehler, 1987; Spencer, 1971; Xiao,
1996). With the geometrical meaning of principal invariants, the presented formulation contains three
principal invariants corresponding to the isotropic basic continuum and two principal invariants regarding
the preferred material direction. They can be associated with longitudinal changes of length in fiber di-
rection and with changes of the orientation in a 3d-continuum. In case of infinitesimal strains near to the
natural state any material model must be reducible to the classical theory. Furthermore, simulating large
strains in hyperelasticity (Ogden, 1972; Basar and Ding, 1997; Wriggers and Reese, 1996; Betsch et al.,
1996), the restrictions of polyconvexity and coerciveness (Ball, 1977; Ciarlet, 1988) should be taken into
consideration. One possible stored energy function for transversely isotropic, compressible materials is
developed fulfilling the restrictions on constitutive relations.

The application of a continuum based multi-layer finite shell element provides the simulation of varying
transversely isotropic material components throughout the thickness very accurately. Thereby assumed
strain concepts are used to eliminate shear- and curvature-locking and enhanced assumed strain concepts to
avoid Poisson-, membrane- and volume-locking (Betsch and Stein, 1995; Bischoff and Ramm, 1997; Eck-
stein, 1999).

2. Analysis of nonlinear deformation

The following relations will be presented in tensor notation. Latin indices represent the number {1,2,3}
and Greek ones the number {1,2} in combination with standard summation convention. A Lagrangean
point X is identified with its position vector X = X(O', %, ©*) depending on the curvilinear coordinates &’
in a three-dimensional Euclidean space R®. Whereas the undeformed state is characterized with capital
letters, the deformed configuration is written in small ones. The covariant basic vectors

&
00"

(= and g = (n

are coupled with the contravariant basic vectors G' = G'G;, g' = g'g,, 5; =G, -G =g, g and the metric

is given by G;; = G, - Gy, g; = g; - g; as well as G' = (Gy)) ' g7 =(g")"". A deformation of the reference
configuration Q is a vector field ¢ : Q — R® that is smooth enough, injective except possibly on the boundary
of the set Q, and orientation-preserving with a deformation gradient F = V¢ € Mi, F = g, ® G' performing
the condition det F > 0. The computation of a differential length, surface and volume element of the de-
formed configuration in terms of same quantities defined in the reference configuration are necessary for the
nonlinear strain-stress relation based on a Lagrangean description.

Length (1d) ds= (dX"F'FdX)'"?,
Surface (2d) da = ||Cof FN||d4, N normal to d4, (2)
Volume (3d) dv=det FdV.

The geometrical meaning of the principal invariants of the right Cauchy—Green tensor C = F'F is re-
markable. The first principal invariant Ic = ||F||* can be associated with the longitudinal length changes of
differential line elements, the second one IIc = ||Cof F||* is related to a change of the angle between two
differential line elements caused by shear deformations and the third principal invariant Illc = (det F)?
describes volume changes of a 3d-continuum. Normally, the principal invariants are calculated in terms of
the basic invariants tr C, tr C, tr C* taking the Cayley—Hamilton theorem into consideration:
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]C = trC,
llc = trCof C = }[(trC)* — trC?], CofC = (detC) C', (3)
e = detC = ltr C’ — Y(tr C*)tr C + Y(tr ).

3. Modeling of hyperelastic material

An elastic material is hyperelastic if a stored energy function W : Q x Mi — R exists. The material has
to be homogeneous and the reference configuration has to be the natural state. Therefore one demand for
general constitutive relations is the frame-indifference

W(F) = W(QF) = W(F'F) = W(C) forall Q€ 0, (4)

which implies an explicit dependence on the right Cauchy—Green tensor.

The demand for frame indifference works on the deformed configuration, material symmetry is regarded
to the undeformed state. The group of symmetric transformations Gy characterizes the symmetry prop-
erties of the material in the undeformed state and imposes restrictions upon the manner, in which # de-
pends on C for constructing an integrity basis of irreducible polynomial invariants (Green and Adkins,
1960; Spencer, 1971)

W(C) =W (QCQ") forall Q€ Gy C O°. (5)

The 2. Piola-Kirchhoff stresses and the elasticity tensor

< oW . i
2 A QA —4
S aC, i ® J and € ac,'jaCk/

A®A;®A® A, (6)

are calculated corresponding to a local orthogonal, right-handed coordinate system (Green and Adkins,
1960; Schultz, 1996)

sin(9 — o sin o
A= <. )G<1> +—=—Gp),
sin ¢ sin ¢ ()
_cos(¥ — ) cosa
Az = - sin ¢ Gy + sin ¢ Gp)

with A in preferred material direction, Gy = G;/V/Gi, ||Ai|| = 1, A3 = A| x Ay, cos? = Gyjy - Gy and the
fiber direction a with cosa = Gy - A;. Related to such a system of basic vectors A; the elasticity tensor
contains a minimal number of non-zero components with the symmetries

Cikl — Gkl _ Fklij _ Fijlk (8)

and 21 independent components at the most. The smaller the symmetries the material include, the bigger is
the number of independent components of C’*, and just so is the integrity basis of irreducible invariants as
well as the number of material coefficients.

3.1. Isotropic hyperelasticity

If the group of symmetric transformations contains the whole orthogonal group Gy = ©°, a stored
energy function can be presented in terms of the eigenvalues 4;(C) or of their elementary symmetric
functions {/c, IIc,llic} (Basar and Weichert, 2000)
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W(C) = W(QCQY) = W (A, o, 23) = W(lc, e, ). (9)

3.2. Transverse isotropic hyperelasticity

With one preferred material direction the symmetric transformation group Gy contains all continuous
rotations related to the fiber direction and reflections with respect to the in plane fiber (Green and Adkins,
1960; Spencer, 1971). On the base of a known set of symmetric transformations Gy an integrity basis of
polynomial, irreducible invariants can be specified, which contains five polynomial invariants in the case of
transverse isotropy

W(C) = W(QCQ") = W(l¢,llc, ¢, Cyy,CixCx1) Q€ Gy (10)

with K = 2, 3. An isotropic stored energy function can be constructed with a structural tensor A; ® A; and
||A1]| = 1 referring to the preferred material direction.

W(C, A ®A;) =W(QCQ", QA ® A Q") Qe0’
= W(le, e, ¢, Iy, I1,).

(11)

The three principal invariants {I¢, Ilc, Illc } are known from an isotropic continuum and the additional two

ones
Iy =tr[C(A; ® A))] = A|CA| = Cyy, (12)
1, = trCof [C(A; ® A)] = L[(A|CA|)’ — A, C°A|] = CixCr

can be associated with the deformation of a differential line element in fiber direction with respect to its
length and its orientation in a 3d-continuum. The formulation includes the assumption that even the de-
formed state contains only one preferred material direction.

4. Strain energy function for large strains

It is desirable that constitutive equations reflect in some fashion the intuitive idea that “infinite stresses
must accompany extreme strains” (Antman, 1983a,b). This corresponds in the case of hyperelasticity to the

requirement (Ciarlet, 1988) that the stored energy function W approaches +oco as
4(C) = 0" <= det F — 0",
2:(C) = 400 <= ||F|| = +o0 A ||Cof F|| — 400 Adet F — +o0.

(13)

A stored energy function W is polyconvex (Ciarlet, 1988; Ball, 1977) if there exists a convex function
W : M? x M*x]0, +oo[— R such that
W(F) = W(F,Cof F,det F) for all F € M. (14)
With the behavior as limgerr)—o+ W(F) = +o00 and the performance of the coerciveness inequality
W(F) = o{|[F||” + ||Cof F|| + (det F)'} + § 2 >0, BER, (15)

which bases on proofs of existence (Ball, 1977) as well as the sharper restrictions for the exponents p > 2,
g =p/(p—1),r >0, there exists a deformation ¢ with V¢ = F, which solve the minimization problem for
a large strain analysis. The physical and mathematical restrictions must be fulfilled for isotropy and for
transverse isotropy.
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4.1. A stored energy function for isotropy

Combining these aspects, the stored energy function of Mooney—Rivlin type for compressible materials
W(C) = C (IC — 3) + Cz(l]c — 3) + F(Illc) C1,Cy > 0 (16)

is polyconvex and satisfies the corresponding coerciveness inequality with p = g = 2. The exponent r depends
on the convex function I": |0, +oo[— R, which is able to simulate the behavior as lim g p)—o+ W(F) = +00.
A special case is the Neo—Hookean model for compressible materials

W(F) = W(C) = ¢ (Ic — 3) + I'(Ilc), (17)

which will be used to extend the stored energy function to transverse isotropy.

4.2. Large strains in a preferred material direction

With the existence of one preferred material direction inside the isotropic basic continuum two addi-
tional limiting states of strain must be taken into account, namely extreme stretching and extreme com-
pression of the fiber described by

W(F,Al ®A;) — +oo for Iy — +oo and Iy — 07, (18)

Using principal invariants a stored energy function for transverse isotropy fulfills the restriction on
polyconvexity (14) and coerciveness (15). The second additional invariant /I, (12) permits the simulation of
deformations regarding the orientation of the fiber in a 3d-continuum. This part is especially necessary for
the reduction of an arbitrary constitutive equation to the classical theory near to the natural state.

4.3. A stored energy function for transverse isotropy

One possible stored energy function being able to simulate large elastic strains in the isotropic basic
continuum and additionally in the preferred material direction can be constructed as follows:

W(C A @A) =3, (Ic = 3) + T(llc) + jr(lc = 3)(Ia = 1) = (wy — p Jx + T (Iy). (19)

Volume changes and stretching of the fiber are described by same convex function with the epigraph for
simulating stretching and the natural logarithm for simulating compression

r(ile) = 3, [(1e)' " = 17 = L, In e,

(20)
r“(Iy) = %AH[(IA)I/Z - 1]2 - %ﬂn In 75

with 0 < Iy, lllc < 4. The terms (I — 1)(Ic — 3) and (—p, Inlllc — pyInly) = In(1," - III4") couple volume
changes with longitudinal changes in the preferred direction. The function depends on five independent
material parameters, which are listed in Appendix A.

5. Constitutive relation near to the natural state

_ Near to the unstressed reference configuration the difference of the 2. Piola—Kirchhoff stresses
ST+ 2E) — S(I) in terms of the right Cauchy—Green tensor is a measure of the discrepancy between de-
formation and rigid deformation (C = I (Ciarlet, 1988), which is analogous to the Green—Lagrange strains

E=C-T).



9498 D. Lirding et al. | International Journal of Solids and Structures 38 (2001) 9493-9503

For the natural state, which is characterized by Ic = IIc = 3, lllc = 1, I, = 1, Il = 0, the stored energy
must be zero

W (Ic, llc, Hic, Iy, I1,) =0. (21)
Ic=Hc=3, Hlc=Ix=1, [I5=0
The unstressed state must be verified
0 -
S=2 {— W(IC,IIC,IHC,IA,HA)] =0. (22)
oC Ie=Ic=3, Mlc=Ir=1, I[4=0

Finally, any material formulation has to return into the classical theory (Spencer, 1984)

S = (AtrE + «AEA )L + («trE + A EA)A; @ A; + 21, E +2(1) — 1, ) (A1 © A{E + EA|; © A)),
(23)

which is evaluated for infinitesimal strains near to the natural state.

6. Finite element formulation
6.1. Shell kinematics

The basic assumption of the presented continuum based shell kinematics is the approximation of the
position vector x = x(@') by a linear expansion in thickness coordinates @°

X=X+60d —h2<0°< +h/2 (24)

with the position vector of the midsurface X = §(@“) The extensible shell director d = dy(©”) enables to
simulate thickness changes of the structure starting from ||D|| = 1 in the undeformed state. The presented
six-parameter single layer theory can be applied to a multi-layer shell concept requiring C°-continuity of the
displacement field on all interfaces (Basar et al., 1993, 1999a,b).

6.2. Virtual work

The total energy II = II;, 4+ II. depends on conservative loads in II. and the above mentioned stored
energy function (19) for transverse isotropy in I1;. During the linearization procedure of 8I1; = [, SE:SdQ
the following parts:

ASH,-:/ASE:SdQ+/8E:ASdQ+/8E:SdQ (25)
Q Q Q

contain the geometrical and physical tangential element stiffness matrix in the first two terms and the vector
of the internal forces in the last one. With the presented hyperelastic material model for compressible,
transversely isotropic materials, the 2. Piola—Kirchhoff stresses are given by

S= [y +0.5a(fy = DT+ [0.50(Ic - 3) — By ([A)_1 + 41— ([A)_l/z)]Al QA — 2(#“ — 1)
X (AIC® Ay + Ay @ CA) + [—u, + A (e — (IIc)"*))C™! (26)

and the elasticity tensor by
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C=oll® (A @A)+ (A @A) @I +2(u(Ly) > +0.54 (L) A @A ® A A @A,
+ 22, (Ul — 0.5(1c) *)C™ @ €1+ 2[uy — Ay (Ul — (Ule) P)|ler — 4, — A (27)
with A = (A'4"G' + AA'GF)A, @ A; ® Ay @ A

6.3. Discretization

The theoretical fundamentals are transformed into a four-node layer-wise isoparametric shell element
using bilinear shape functions for interpolating all displacement variables. Locking phenomena derive
mostly from insufficient approximation of the strains caused by a low-order approximation of the dis-
placement field. Assumed strain concepts are used in shear-locking related to constant transverse shear
components and in case of curvature-locking, related to transverse normal strains. Enhanced assumed strain
concepts are applied to membrane- and volume-locking referred to the constant tangential strain components
and additionally to avoid Poisson-locking by introducing linear transverse normal strains (Betsch, 1996;
Wriggers and Reese, 1996; Bischoff and Ramm, 1997; Eckstein, 1999).

7. Examples

The hyperbolical shell (Fig. 1) with locally distributed vertical line loads renders the analysis of large
strain phenomena as well as finite rotations. Due to the symmetry of the structure one eighth of the shell is
discretized by 12 x 12 elements. The nonlinear simulation is done with the developed transversely isotropic
model (19) and with a corresponding model based on the classical theory (23) (Spencer, 1984).

Starting with a nearly incompressible continuum the material properties for the preferred material di-
rection are varied with respect to a factor 4 (Figs. 2 and 3). With fibers in @'- or @*-direction the different

AX3= ©°
Geometry:
2 _ 2
r(©?) = \J R A
t
Ta = 5.0 Tt = 3.0 Lt =6.0

h=05 h1 =0.125 hy = 0.25

Line loads: ¢g=1.0

Material data:

Ej = 165.0 E, =66
) = 55.4 ML = 2.2

v =0.49

Fig. 1. Hyperboloidal shell under concentrated loads.



9500 D. Lirding et al. | International Journal of Solids and Structures 38 (2001) 9493-9503
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Fig. 2. Hyperboloidal shell: load displacement diagram with £y = AE, y = Au.

Loadfactor A

10 ; ;
8 | / ~— |
! —]
(5=2 —
/ (T—
6 | Il &
' /
/ / A=5
1 [
4 | / / ]
1//
4 A=10
2L // /7 ]
/7 ~___phys. linear
Z —phys. nonlinear
1 2 3 4

Displacement v

Fig. 3. Hyperboloidal shell: load displacement diagram with £, = E/A, u, = u/A.

behavior of a physical linear (23) and nonlinear model (19) is shown. If the load and the fiber are oriented in
the same direction, it is obvious that the bigger the differences of matrix and fiber with increasing stiffness
factor 4 are the inferior is the influence of the physical nonlinearities. But regarding fibers perpendicular to
the load direction, it is evident that the bigger the differences of the matrix and fiber with increasing stiffness

factor 4 are the bigger is the influence of the physical nonlinearities.
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Loadfactor A
15 — A

1.0

Ak
hq ho hihq ha hyq

051

o—— 0/90/0 |
=——= 90/0/90

0.1 0.2
Displacement v

Fig. 4. Hyperboloidal shell: load displacement diagram with Ey = SE, yy = Spand £, = 0.2E, u, = 0.2

Another numerical simulation is carried out for two differently twisted stacking sequences of a three
layered shell structure (Fig. 4), namely [0°/90°/0°] and [90°/0°/90°]. Differences in global deformation
behavior cannot be seen. The local effects only appear if the mesh is refined towards the local concentra-
tions (Basar et al., 1999a,b).

8. Conclusion

A general mathematical concept for considering transversely isotropic hyperelastic materials starting
from a group of symmetric transformations has been presented. Five principal invariants, the three of the
isotropic basic continuum and two regarding the preferred material direction, has been chosen for con-
structing the integrity basis of polynomial irreducible invariants taking their geometrical meaning into
account. Moreover, the use of principal invariants has rendered the incorporation of the integrity basis for
transverse isotropy into the concepts of polyconvexity and coerciveness. The developed stored energy
function is valid for transversely isotropic materials, which are able to sustain large elastic strains. This
formulation includes the classical theory in case of infinitesimal strains and contains a Neo—Hookean model
for compressible isotropic materials as a special case. Furthermore, the developed material model is able
to simulate large strains additionally in fiber direction. First application to a shell model has been pointed
out.
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Appendix A

For transversely isotropic material behavior there are five independent material parameters, which are
parallel and perpendicular to the preferred material direction with Young’s moduli £, E,, Lame’s shear
moduli g, u,, Poisson’s ratio vj. The Poisson’s ratio v, can be calculated in the plane of isotropy
v, =E;/[2(1 4+ u,)] (Jones, 1975). For the developed stored energy function w and p, are used as well as

. 1
/LL:Z(VL‘f‘nVﬁ)EL,
1
A= a((l — vi)EH = 2p; =4y — 204+ v)vEL + (vo +nvﬁ)El), (A1)
1
o :Z((l + v )y — v —m)EL

with 4 =1— 2nvﬁ -V — 2VLVﬁ and n = E,| /E|.
The parameter f in Eq. (23) is calculated by

B = % (3 +1—v2) + 20, (1 —v) = 2v — DEL — 4y (A2)
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